
Progress towards "Large Molecule" support within InChI Evan Bolton, Ph.D. – Program Head of Chemistry bolton@ncbi.nlm.nih.gov

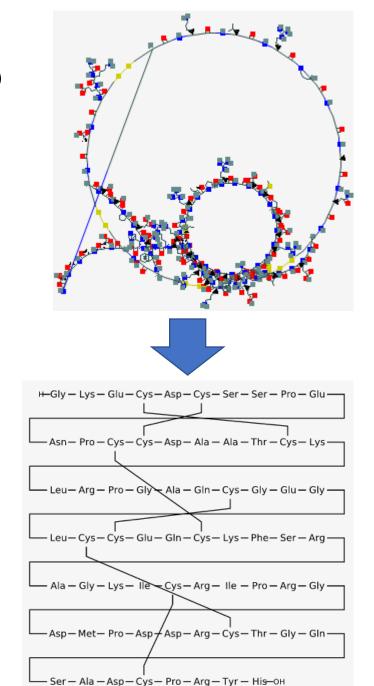
What is a "large molecule"? (a.k.a., 'macromolecule')


- An increasingly important set of chemicals with more than 1,000 atoms and bonds
- Often these are biopolymers
 - amino acids, nucleic acids, carbohydrates (and lipids?)
- Often contain more than known bio-monomers
 - linkers, functionalized, post-translational modifications (PTMs)
- Often containing some degree of uncertainty in its composition
 - unknown sections, variable repeating units, unknown connection points, multiple possible connection points, probabilities of different monomers, mixtures

Small Molecule Drug / Pharmaceutical Aspirin 21 atoms

Large Molecule Drug Human Growth Hormone ~3,000 atoms

Large Biologic Herceptin ~25,000 atoms



https://www.edisongroup.com/wp-content/uploads/2019/06/1.-Exhibit-Molecular-structures-of-small-molecule-and-biologic-drugs.png

Why InChI for "large molecules"?

- InChI was designed with "small molecules" in mind
- Chemical informatic approaches are increasingly expected to handle entities beyond small molecules
- Canonicalization approaches lacking for large molecules containing more than linear sequences of "monomers"
- Cannot simply increase the allowed count of atoms/bonds
 - Excessive compute time
 - InChI too long
 - Greater chance of InChIKey collisions
- New algorithms or approaches needed to improve utility

"Large molecule" effort aims?

- Help to further validate the limits of the experimental 32K atom/bond limit of InChI
- Provide 'enhanced' large molecule optimized capabilities
 - more compact representation, extra layers
 - each layer handling a degree of 'sameness'
- Canonicalize large molecule representation
- Reduce the computation complexity to work with large molecules
 - e.g., "pseudo atoms" for common monomers
- Handle large biopolymer containing molecules with variability

How will these aims be accomplished?

- DyVInChI dynamic variable InChI, pseudo atoms
 - Use predefined 'well behaved' monomers, no variation allowed
- Leverage pre-existing file formats
 - Biovia MOL/SDF Self-Contained Sequence Representation (SCSR), ChemAxon extended SMILES, and Pistoia HELM
- Design a layered 'large molecule' specification built on-top-of the InChI code base

Progress towards large molecules in InChI?

- Max limit of 1K atoms/bonds increased to 32K (v1.0.5)
- Two mini-proposals circulated
- Any atom ('Zz') added (v1.0.6)
- Worked with HELM (Claire Bellamy) to establish a set of 'common' monomers using SugarNSplice (NextMove Software)

	rt for pseudo-atom biopolymer monomer representation IUPAC InChI standard						
Purpose: Enable chemica	Ily modified biopolymers identity to be rapidly accessed (by comparing InChI/Key						
atom approach	the support for all any atom within the for AC men standard.						
length. Make p speed to comp	Purpose: Add support to InChI for dealing with molecular fragments. Provide InChI canonicalization	n and ide					
	utility to fragments, motifs, and other molecular entities that are not a completely defined structure. It is envisioned that this addition will enable additional enhancements and sup forms of variability and mixtures using the ULBAC Inch. standard	d chemi					

and mixtures using

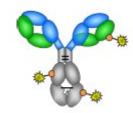
Monomer	▼ #CIDs ▼	#ChEMBLs 🔻	#PMIDs 💌	#Patent 💌	Exemplar CIDs	Ŧ	Exemplar ChEMBL
Ac3c	2,786	69	1,694	11,936	535 10217360 159259	510	CHEMBL1098996 CHEM
Ac5c	3,850	363	1,492	12,973	2901 10529589 16134	4986	CHEMBL105833 CHEMB
Aib	17,653	800	5,300	62,228	2706 10885437 17938	8449	CHEMBL107381 CHEMB
bAla	47,056	1,212	29,200	146,391	111 7827858 1041200	08 2	CHEMBL100038 CHEMB
D-2Nal	3,767	687	9,549	86,366	119348 10189836 107	7248	CHEMBL103817 CHEMB
D-Abu	15,270	47	30,831	21,455	121844 65808522 739	9271	CHEMBL1198130 CHEM
D-alle	2,603	334	11,464	39,217	83171 8574699 10148	8124	CHEMBL103538 CHEMB
D-Ala	41,664	2,043	304,028	429,315	53370 9833688 12209	5382	CHEMBL100202 CHEMB
D-Arg	7,305	1,601	101,098	218,773	12326 10102548 1090	0699	CHEMBL100712 CHEMB
D-Asn	2,610	446	27,674	17,669	78334 6999728 75922	257	CHEMBL1162388 CHEM
D-Asp	5,146	879	61,248	66,574	22880 9811905 10532	2628	CHEMBL103089 CHEMB
D-aThr	1,466	295	17,559	43,390	90624 7097851 10433	3959	CHEMBL1076803 CHEM
D-Cys	5,889	1,315	290,056	61,323	82333 10395509 1132	2062	CHEMBL103799 CHEMB
deamino-Cvs	1 581	340	64 403	53 530	9229 10102549 1129	9100	CUEMPI 10962 CUEMPI

HELM collaboration to find a 'common' set of biopolymer monomers

- Create a list of 'common' biopolymer monomers
- Detect and prioritize biopolymers for inclusion in terms of:
 - Found in PubChem chemical records (frequently found)
 - Found in ChEMBL (measure of drug discovery importance)
 - Found in PubMed articles (measure of biomedical importance)
 - Found in patent records (measure of general utility)
- Examined amino acids, nucleic acids, and carbohydrates/glycans
- Future work is to formulate these into a 'pseudo atom' scheme
 - Compress the molecule graph when the molecule is 'large' and when it is primarily comprised of biopolymer monomers
 - Explore use of the InChI algorithm to canonicalize the graph of pseudo atoms

Variability handling proposal

Add support for a dynamic variability representation within the IUPAC InChI standard (DyVinchi)


Purpose:

Add formal support to IUPAC InChI for dealing with chemical structure variability using a three-layer approach built on top of the InChI with well-defined semantics that defines the molecular fragments, their variable attachment points, and their variable connectivity.

Biopoloymer Representation

HELM Line Notation Extension -Ambiguity

Connected monomer type is known, position unknown

Connection partner/monomer is undefined

Configuring Databases for Biopolyr

This section describes changes that you might nee biopolymers using the BIOVIA Draw Sequence Too

Condensed Representation of Biopol

Biopolymer residues can be represented abbrevia or ctab) underneath. The full structure conventior sequence.

The full structure convention works well for oligon

Dynamic Variability InChI – (Dy)Vinchi

- 1. Define entities
 - in non-attached state
 - addressable by order
- 2. Define attachments
 - heavy atom only
 - single valence only
- 3. Define variability
 - addressable by order
 - * spawns entity, 0=unkn

- Allows multiple attachments per entity
- Can nest variability
- Can provide counts
- Can provide ratios
- Handles Markush, variable connection, variable loading

DyVinchi Specifics

- Define Entities

 InChI with "[..]"
 - Inchiwith [..] [InChi=1S/C6H6/c1-2-4-6-5-3-1/h1-6H]
 - Order determines ordinal
- Layered separator "|"
- · Define attachments
 - [#,[#,#]][#,#]
 - First#is entity
 - Second # is atom ID in
 - InChI, can be a "[..]" list
 - Atom ID "0" means undefined

- Define variability
 - Two parts .. Attachment definition .. Attachment to what
 - Attachment definition can be nested with "[..]" list
 - Simplest is [#,#]
 - First number is entity
 - Second # is atom ID
 - Every # can be nested
 - Atom ID can include a ratio with ":" separator
 - E.g., "[2:1]" atom 2, 1 part

National LIDIALY OF INECICITE National Center for Biotechnology Information

What is needed?

- Volunteers to contribute:
 - Expertise
 - Use cases

bolton@ncbi.nlm.nih.gov

You can help improve chemical informatics

https://webakede.com/mp/mp/kaskap_d00_402/ankndpamamachunatik/filmokestal https://webakede.com/mp/kaskappg

http://www.admancareer.com/ing/blog/M-66-68-18-cake-a-difference.pg

Special thanks

- Igor Pletnev
- IUPAC InChI "Large Molecule" working group (including the former head Keith Taylor)
- NextMove Software (Roger Sayle, John May), and alumni (Noel O'Boyle and Daniel Lowe)
- HELM Pistoia Alliance collaborators (including Claire Bellamy and Anna Gaulton)
- IUPAC InChI subcommittees, InChI Trust, IUPAC CPCDS (Leah McEwen), various scientific workshops, discussions, and communications
- All PubChem Contributors and Collaborators
- This research was supported by the Intramural Research Program of the NIH, National Library of Medicine

